Tauberian theorems for ordinary convergence
نویسندگان
چکیده
We show that a real sequence x is convergent if and only there exist regular matrix A an Fσδ-ideal I on N such the set of subsequences y for which Ay I-convergent second Baire category. This includes cases where ideal asymptotic density zero sets, Banach finite sets. The latter recovers old result given by Keogh Petersen in (1958) [26]. Our proofs are different nature rely recent results context I-Baire classes filter games. As application, we obtain stronger version classical Steinhaus' theorem: each A, exists {0,1}-valued Ax not statistically convergent.
منابع مشابه
Tauberian theorems for sum sets
Introduction. The sums formed from the set of non-negative powers of 2 are just the non-negative integers. It is easy to obtain “abelian” results to the effect that if a set is distributed like the powers of 2, then the sum set will be distributed like Dhe non-negative integers. We will be concerned here with converse, or “Tauberian” results. The main theme of this paper is t’he following quest...
متن کاملTauberian Theorems for Summability Transforms
we then write sn → s(A), where A is the A method of summability. Appropriate choices of A= [an,k] for n,k ≥ 0 give the classical methods [2]. In this paper, we present various summability analogs of the strong law of large numbers (SLLN) and their rates of convergence in an unified setting, beyond the class of random-walk methods. A convolution summability method introduced in the next section ...
متن کاملMultidimensional Tauberian Theorems for Vector-valued Distributions
We prove several Tauberian theorems for regularizing transforms of vector-valued distributions. The regularizing transform of f is given by the integral transform M φ(x, y) = (f ∗ φy)(x), (x, y) ∈ R n × R+, with kernel φy(t) = yφ(t/y). We apply our results to the analysis of asymptotic stability for a class of Cauchy problems, Tauberian theorems for the Laplace transform, the comparison of quas...
متن کاملWiener Tauberian Theorems for Sl 2 ( R )
In this article we prove a Wiener Tauberian theorem for L(SL2(R)), 1 ≤ p < 2. Let G be the group SL2(R) and K its maximal compact subgroup SO(2,R). Let M be {±I}. We show that if the Fourier transforms of a set of functions in L(G) do not vanish simultaneously on any irreducible Lp− -tempered representation for some > 0, where they are assumed to be defined, and if for each M-type at least one ...
متن کاملON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2023
ISSN: ['0022-247X', '1096-0813']
DOI: https://doi.org/10.1016/j.jmaa.2022.126798